Abstract: A significant barrier preventing model-based methods from achieving real-time and versatile dexterous robotic manipulation is the inherent complexity of multi-contact dynamics. Traditionally formulated as complementarity models, multi-contact dynamics introduces non-smoothness and combinatorial complexity, complicating contact-rich planning and optimization. In this paper, we circumvent these challenges by introducing a lightweight yet capable multi-contact model. Our new model, derived from the duality of optimization-based contact models, dispenses with the complementarity constructs entirely, providing computational advantages such as closed-form time stepping, differentiability, automatic satisfaction with Coulomb’s friction law, and minimal hyperparameter tuning. We demonstrate the model’s effectiveness and efficiency for planning and control in a range of challenging dexterous manipulation tasks, including fingertip 3D in-air manipulation, TriFinger in-hand manipulation, and Allegro hand on-palm reorientation, all performed with diverse objects. Our method consistently achieves state-of-the-art results: (I) a 96.5% average success rate across all objects and tasks, (II) high manipulation accuracy with an average reorientation error of 11° and position error of 7.8 mm, and (III) contact-implicit model predictive control running at 50-100 Hz for all objects and tasks. These results are achieved with minimal hyperparameter tuning.