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Earlier this year the Skydio 2 was released, which innovates
INn both 360 perception and superior autonomy







To deliver value, the autonomy stack has to support superior
navigation, tracking, and motion planning at very low power
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Many of these at their core are optimization problems with
locality, which is captured well by factor graphs
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Many of these at their core are optimization problems with
locality, which is captured well by factor graphs

Odometry measurement
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Factor graphs can represent many robotics problems, from
tracking to optimal control to sophisticated 3D mapping
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Factor graphs expose opportunities for raw speed because
of the deep connection with sparse linear algebra

- Ordering heuristics
- Nested Dissection
- Sparsification

- Pre-integration

- [terative Solvers

- Incremental Inference and the Bayes tree




actor graphs are beneficial in designing and thinking about
your problem, even aside from performance

— Imaging
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In SAM we are interested in inferring the trajectory of the
robot and a map of the unknown environment



The factor graph associated with a small SAM problem
iInstantaneously shows the structure of the problem
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In practice, Square Root SAM is implemented using sparse
matrix factorization, which is a computation on a graph

Jacobian
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Visual SLAM in 2005 might have looked a bit cheesy, but we
already did 8-camera visual SLAM back then

We used non-vacuum iIRobots
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The key points from the Square Root SAM papers have
stood the test of time, but we know so much more now

Key points
— Matrices & Graphs

— Factorization < Variable Elimination

— Improving Performance < Variable Ordering

nat we know now

oerformance

Square Root SAM
Simultancous Localization and Mapping

via Square Root Information Smoothing

Frank Dellacrt and Michacl Kacss
Center for Robotics and Intelligent Machines, College of Computing
Georgia Institute of Technology, Atlanta, GA 30332-02

To appear in the Intl. Journal of Robotics Research
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GTSAM embodies many of the ideas we and others have
developed around factor graphs since then
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C++ library: gtsam.org
oython & Matlalb wrappers

Optimization on
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_anguage

Open-source, BSD-licensed
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Square Root SAM on real sequence, the Sydney Victoria
Park dataset, shows how sparsity is key to performance




While finding an optimal ordering is NP complete, heuristics
coupled with domain knowledge can do wonders
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Domain knowledge often shows how to break up graphs, a
generalization of “nested dissection” [Kai Ni et al. IROS "10]

Now CEQO of Beijing autonomous driving startup %2 HOLOMATIC FEZFl1%



Hyper-SFM applies hierarchical nested dissection to the
structure from motion problem [Ni et al. SDIMPVT’12]




Breaking up graphs can lead to powerful new paradigms for
distributed mapping [Alex Cunningham et al, ICRA "13]




The Bayes tree is a powerful graphical model 1
iIncremental Smoothing and Mapping (ISAM)

-

Exploit the fact that the square
root Information matrix can be
understood as a directed
junction tree: the Bayes tree
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ISAM edits a Bayes tree as new measurements arrive




ISAMZ2 at work on a synthetic sequence really shows off the
reduction In amortized costs afforded by the Bayes tree




ISAM has been applied in many applications, from mapping
aircraft carriers [Kim et al 2013] to experiments on the 1SS

USS Saratoga (CV-60)




Pre-integrating IMU measurements yields state of the art
visual-inertial navigation [Forster et al. TRO'17]

- VIO pre-integrated IMU

- Integrates IMU measurements
pDetween poses, subtracting gravity

- HEfficient and accurate!
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Sparsification in visual-inertial navigation strikes a perfect
balance between efficiency and accuracy

1. Extract

- A -
IMU; k
Epson G364 (250Hz)
Stereo €

o Camera:
uEve ULL3241LE-M-GL (10 Hz)
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MIT’s Kimera is a state of the art metric-semantic SLAM built
upon factor graphs and GTSAM [Rosinol et al. ICRA “20]

- Four modules:
—VIO pre-integrated IMU

—Robust factor-graph-
Dased pose graph

—Real-time meshing
module

—Semantics module
fuses semantic 2D
information into the 3D
mesh representation.




Rosinol et al. will present the impressive Dynamic Scene
Graphs here at RSS, which builds upon Kimera




Czarnowski et al. [RAL '19] integrated deep VAESs into factor
graphs to build a real-time, dense SLAM system
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- Real-time dense SLAM system
—\Variational auto-encoder (VAE)
—Compact “latent” codes

—Codes are unknowns in a iISAM-
based SLAM system




Factor graphs have been used in humanoid state estimation
at University of Michigan... [Hartley et al. IROS '18] (1/2)

CAM

- Fuse Inertial with visual and domain
specific knowledge about legged robots.

- Forward kinematics (FK).

- Pre-integrated contact factors, which
Contact Frams integrate foot contacts.

C Frame




..and at Oxford for fusing visual odometry and quadruped
state estimation [Wisth et al. ’19-20]

Onboard Feature tracking

p
- La Ground Truth
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Factor graphs turn out to be an excellent framework in which
to innovate in motion planning [Mukadam et al. I[JRR ’18]

- Factors for:

— Qverall task-related objective
— Gaussian Process motion prior factors
— Obstacle avoidance, joint limits, etc...
- Fast incremental replanning using the Bayes Iree



We used factor-graph-based motion planning to plan artistic
action such as robot calligraphy [Wang et al. IROS '20]

-
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We used factor graphs to encode robot dynamics and
applied to kino-dynamic motion planning [Xie et al. '20]
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Joint Torque @ @ Tool Wrench
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: Factor
Trajectory Smoothness

Factor

Collision-avoidance
Factor

- Recipe:

—lake Lynch & Park modem dynamics
formulation

— [urm into factor graph
—Optimize with sparse (incremental) solvers



STEAP does both: simultaneous trajectory estimation &
(motion) planning [Mukadam Auro‘18]
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Mustafa Mukadam, Jing Dong, Frank Dellaert & Byron Boots

Robotics: Science and Systems, 2017, Autonomous Robotics, 2018
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Hard constraints for Bayes tree significantly expand iSAM?2

capabillities [Sodhi et al 2020]
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Factor graphs support modeling ambiguous situations,
but what about inference”?

Option |
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sunap
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Multi-mode factor
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Non-Gaussian inference using nonparametric belief
oropagation on the Bayes tree [Fourie et al 2016}
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For Gaussian problems with ambiguity, multi-nhypothesis
tracking run multiple parallel instances of inference

- One Bayes tree per hypothesis
- Exponential growth: Pruning

M M M M
by 6, B h 03 04 fs f2 Bg B+ Og f3 fo 6o 9nf4 Bia B13 B4 fs bs g Oy fs bhg O B

Total 26 = 64 Bayes trees



Multi-hypothesis Bayes tree saves computation by avoiding
redundant computation [Hsiao et al 2019]
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Multi-hypothesis RGB-D mapping avoids wrong decisions
and can provide multiple plausible solutions

Multi-hypothesis Single hypothesis



Knowledge about ambiguity is useful for planning including
active SLAM [Hsiao et al 2020}

Online multi-hypothesis Ground truth map

active SLAM result and trajectory




s loopy belief propagation on factor graphs a better match
to the hardware of the future [Davison et al 2020]7
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—Factor grapns on a grapn ‘processor

- ~ A —Loopy belief propagation
GRAFHCORE —\Well suited for parallel hardware

—CVPR: 30x faster SfM |
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Working on Square Root SAM 15 years ago we had no
crystal ball, but we certainly imagined more robots around




The outlook for airborne autonomy is relatively positive, as
the airspace environment is the easiest to conquer

- Planning state space Is just 6D

- [he airspace Is relatively uncluttered

- Skydio has show convincing results

- Efforts by NASA/DARPA to assure safe airspace

- Crashes of light-weight drones are probably non-letha




The timeline for selt-driving cars is less clear, because of the
“long tail”, bugs, and their possibly lethal conseguences

99.9999...%

Image by Andrej Karpathy, Tesla




Factor graphs and GTSAM have been used in several
autonomous driving companies, e.g., Z0oox, Holomatic

g REnn
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We started a non-profit initiative, OpenSAM.org, to advance
certiflable factor graphs for embedded applications

UoerSAM Dot Started Peccle News  About

OpenSA

Fosan n Sobotcs

I

"he OpenSAN Foardator [T | a0 w0 geoll oramctton Thd seetdy \a ahverve e e of L ir

oM Ty sy Anon N roboticy g comouter viaon apoicetom

- GISAM ‘o_r back-office and Research

- OpenSAM: reference iImplementation for embedded systems
— Collaboration with Holomatic and other companies. ..

— Goal: fast, certiflable code for a subset of GTSAM functionality
— Looking for industry memberships/collaborations!

GTSAM is used by
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The most difficult environment to deploy robots In is the
home, because of perception/manipulation/HRI

- Perception is very challenging due to clutter, occlusion. ..
- Manipulation in those environments is yet unsolved
- EXpectations of people are mismatched




Our new effort, SwiftFusion, is focused on combining
estimation and optimal control with the data-driven revolution

- Google collaboration: SwiftFusion
- Seamless integration with TensorFlow
- Fast, automatically differentiated factors

- Sparse factor graphs and dense tensor
porocessing N one language

- Which will enable:

- Combine probabilistic estimation and
Optlmal control with data-driven factors https://github.com/borglab/SwiftFusion

- Collaborators wanted, DM me @fdellaert



https://github.com/borglab/SwiftFusion
https://github.com/borglab/SwiftFusion

All of this was only possible by amazing collaborations over
the years, in academia, on githulbb.com, and industry
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